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Abstract. A class of nonoscillatory numerical methods for solving nonlinear scalar conservation
laws in one space dimension is considered. This class of methods contains the classical Lax–Friedrichs
and the second-order Nessyahu–Tadmor schemes. In the case of linear flux, new l2 stability results
and error estimates for the methods are proved. Numerical experiments confirm that these methods
are one-sided l2 stable for convex flux instead of the usual Lip+ stability.
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1. Introduction. We are interested in the scalar hyperbolic conservation law{
ut + f(u)x = 0, (x, t) ∈ R × (0,∞),
u(x, 0) = u0(x), x ∈ R,

(1.1)

where f is a given flux function. In recent years, there has been enormous activity
in the development of the mathematical theory and in the construction of numerical
methods for (1.1). Even though the existence-uniqueness theory of weak solutions is
complete [12], there are many numerically efficient methods for which the questions of
convergence and error estimates are still open. For example, there are many nonoscil-
latory schemes based on the minmod limiter which are numerically robust, at least in
many numerical tests, but theoretical results about convergence and error estimates
are still missing [3, 6, 7, 18].

In this paper, we consider a class of the so-called Godunov-type schemes for solv-
ing (1.1). There are two main steps in such schemes: evolution and projection. In the
original Godunov scheme, the projection is onto piecewise constant functions—the
cell averages. In the general Godunov-type method, the projection is onto piece-
wise polynomials. To determine the properties of these schemes it is necessary to
study the properties of the projection operator. We limit our attention to the case of
piecewise linear projection based on cell averages using minmod limiters for the slope
reconstruction, and we call such a scheme minmod-type. For example, the Nessyahu–
Tadmor scheme [15] is of minmod-type and is based on staggered evolution; other
examples include the second-order nonoscillatory central schemes with nonstaggered
grids given in [8, 9], and the UNO and TVD2 schemes in [6]. Theoretical results about
convergence of such schemes to the entropy solution, or error estimates, are still miss-
ing. In most cases the authors give a variation bound for such a scheme, which is
enough to conclude that the method converges to a weak solution; see [10]. The only
paper which has a convergence result is the paper of Nessyahu and Tadmor [15] in
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which the authors prove a single cell entropy inequality for a minor modification of
the original minmod scheme. A single entropy inequality is enough to conclude that
the scheme is convergent to the unique entropy solution but does not give any rate of
convergence. In order to get a rate, one has to have a family of entropy inequalities
(see [1, 2, 11, 14]). Alternatively, for a convex flux, one can impose Lip+ stability on
the projection and then prove convergence via Tadmor’s Lip′ theory [16, 19]. Unfor-
tunately, it is well known that minmod-type schemes are incompatible with the Lip+
condition—the Lip+ seminorm is not preserved by a minmod-type projection. It is
easy to think about minmod-type schemes in terms of new/old cell averages. That
is, we start with a sequence of cell averages {wj}, and after one time step (projection
and evolution) we get a new sequence {w′

j}. A scheme is total variation diminishing
(TVD) if the variation of the new sequence

∑
j |w′

j − w′
j−1| is not bigger than the

variation of the old one
∑

j |wj − wj−1|, i.e., the l1 norm of the jumps does not in-
crease in time. In the Lip+ case (for convex flux) the condition on the jumps is that
the biggest nonnegative jump does not increase in time:

sup
j

(w′
j − w′

j−1)+ ≤ sup
j

(wj − wj−1)+.

In section 3 of this paper, we prove that for linear flux the l2 norm of the jumps for
some minmod-type schemes does not increase in time. This class of schemes include
the NT scheme and the TVD2 scheme considered in [6]. Based on that, we use the
dual approach (see [16, 19]) to derive a new error estimate in L2 in section 4. The
rate of convergence that we prove is 1/2 in L2, which improves the known result of
1/4 (see [19]). In section 5, we present numerical examples in the case of linear and
convex flux and discuss the nonconvex case. Our numerical tests show that for convex
flux the minmod schemes preserve the one-sided analogue∑

j

(w′
j − w′

j−1)
2
+ ≤

∑
j

(wj − wj−1)
2
+,

which suggests a different approach to proving convergence and error estimates for
such schemes in the convex case. The l2 norm of the jumps is a natural candidate
norm for the analysis of high-order schemes, such as central or ENO [7] type, due to
its numerical viscosity. We view the results of this paper as a step toward obtaining
convergence results and estimates for the rate of convergence of minmod-type schemes
for solving (1.1) in the case of convex nonlinear flux.

2. Nonoscillatory central schemes. In this section, we are concerned with
nonoscillatory central differencing approximations to the scalar conservation law

ut + f(u)x = 0.(2.1)

The prototypes of all central schemes are the staggered form of the Lax–Friedrichs
(LxF) scheme and its second-order extension, the Nessyahu–Tadmor (NT) scheme [15].
For an introduction to central schemes, see [8, 9, 13, 15]. For simplicity, we limit our
attention to the staggered NT scheme described below. Let v(x, t) be an approximate
solution to (2.1), and assume that the space mesh ∆x and the time mesh ∆t are
uniform. Let xj := j∆x, j ∈ Z, λ := ∆t

∆x , and

vj(t) :=
1

∆x

∫ xj+1/2

xj−1/2

v(x, t) dx(2.2)
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be the average of v at time t over (xj−1/2, xj+1/2). Let us assume that v(·, t) is a
piecewise linear function, and that it is linear on the intervals (xj−1/2, xj+1/2), j ∈ Z,
of the form

v(x, t) = Lj(x, t) := vj(t) + (x− xj)
1

∆x
v′j , xj−1/2 < x < xj+1/2,(2.3)

where 1
∆xv

′
j is the numerical derivative of v, which is yet to be determined. Integration

of (2.1) over the staggered space-time cell (xj , xj+1) × (t, t + ∆t) yields

vj+1/2(t + ∆t) =
1

∆x

(∫ xj+1/2

xj

Lj(x, t) dx +

∫ xj+1

xj+1/2

Lj+1(x, t) dx

)
(2.4)

− 1

∆x

(∫ t+∆t

t

f(v(xj+1, τ)) dτ −
∫ t+∆t

t

f(v(xj , τ)) dτ

)
.

The first two integrals on the right-hand side of (2.4) can be evaluated exactly. More-
over, if the CFL condition

λ max
xj≤x≤xj+1

|f ′(v(x, t))| ≤ 1

2
, j ∈ Z,(2.5)

is met, then the last two integrants on the right of (2.4) are smooth functions of τ .
Hence, they can be integrated approximately by the midpoint rule with third-order
local truncation error. Note that, in the case of zero slopes 1

∆xv
′
j and 1

∆xv
′
j+1, the time

integration is exact for any flux f , and even for nonzero slopes the time integration
can be exact for a low degree polynomial flux. Thus, following [15], we arrive at

vj+1/2(t + ∆t) =
1

2
(vj(t) + vj+1(t)) +

1

8
(v′j − v′j+1)(2.6)

− λ

(
f

(
v

(
xj+1, t +

∆t

2

))
− f

(
v

(
xj , t +

∆t

2

)))
.

By Taylor expansion and the conservation law (2.1), we obtain

v

(
xj , t +

∆t

2

)
= vj(t) −

1

2
λf ′

j ,(2.7)

where 1
∆xf

′
j stand for an approximate numerical derivative of the flux f(v(x = xj , t)).

The following choices are widely used as approximations of the numerical derivatives
(we drop t to simplify the notation):

v′j = m(vj+1 − vj , vj − vj−1),(2.8)

f ′
j = m(f(vj+1) − f(vj), f(vj) − f(vj−1)),

where m(a, b) stands for the minmod limiter

m(a, b) ≡ MinMod(a, b) :=
1

2
(sgn(a) + sgn(b)) · min(|a|, |b|)(2.9)

with the usual generalization

m(E) :=

⎧⎨
⎩

inf (E) if E ⊂ R+,
sup(E) if E ⊂ R−,
0 otherwise.

(2.10)
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A generalization of this numerical approximation is based the so-called minmod-θ
limiters

v′j = m

(
θ(vj+1 − vj),

1

2
(vj+1 − vj−1), θ(vj − vj−1)

)
,(2.11)

f ′
j = m

(
θ(f(vj+1) − f(vj)),

1

2
(f(vj+1) − f(vj−1)), θ(f(vj) − f(vj−1))

)
.

Given the approximate slopes and flux derivatives (2.11), we have a family of central
schemes in the predictor-corrector form

v

(
xj , t +

∆t

2

)
= vj(t) −

1

2
λf ′

j ,

vj+1/2(t + ∆t) =
1

2
(vj(t) + vj+1(t)) +

1

8
(v′j − v′j+1)(2.12)

− λ

(
f

(
v

(
xj+1, t +

∆t

2

))
− f

(
v

(
xj , t +

∆t

2

)))
,

where we start with vj(0) := 1
∆x

∫ xj+1/2

xj−1/2
u0(x) dx. Note that we alternate between two

uniform partitions of the real line: all intervals with integer end points for t = 2k∆t,
k ∈ Z, and half integers for t = (2k + 1)∆t, k ∈ Z. As a special case, we recover the
staggered LxF scheme for θ = 0 and the basic minmod scheme for θ = 1 (the middle
slope in the minmod limiter (2.11) drops if θ ≤ 1).

3. l2 stability for linear flux. In this section we will prove that the central
scheme given in (2.12) is l2 stable for any θ in the interval [0, 1]. Based on this stability
we will also derive a new error estimate in L2 instead of the usual L1 estimates in the
conservation laws. Note that even for linear flux f , the minmod-type schemes are not
linear and the only global property known is that the total variation does not increase
in time under an appropriate CFL condition; see [15]. The class of minmod-type
schemes is also not Lip+ stable except for the obvious choice θ = 0. Let us consider a
linear flux f(u) = au, uniform time steps tn = n∆t, and restrict the minmod limiter
to θ ≤ 1. We denote vnj := vj(tn), δnj := vnj − vnj−1. The minmod scheme (2.12)
reduces to

vn+1
j+1/2 =

1

2
(vnj + vnj+1) +

θ

8

(
m(δnj , δ

n
j+1) − m(δnj+1, δ

n
j+2)

)
(3.1)

− a∆t

∆x

(
vnj+1 −

a∆t

2∆x
θm(δnj+1, δ

n
j+2) − vnj +

a∆t

2∆x
θm(δnj , δ

n
j+1)

)
.

Hence, we have an explicit formula for the new cell averages (at time tn+1) on a stag-
gered grid in terms of the old ones (at time tn) on a regular grid. In order to simplify
the notation, we drop the time dependence and denote wj := vnj , w′

j+1 := vn+1
j+1/2,

δ′j := w′
j −w′

j−1, α := 1
2 + a∆t

∆x , and β := 1
2α(1− α). With this notation, we have the

following relation between the sequence of the new averages {w′
j} and the old ones

{wj}:

w′
j = αwj−1 + (1 − α)wj + θβ (m(δj−1, δj) − m(δj , δj+1)) .(3.2)

Using that δj = wj − wj−1, we derive the formula for the sequence of new jumps in
terms of the old ones:

δ′j = αδj−1 + (1 − α)δj − θβm(δj−2, δj−1) + 2θβm(δj−1, δj) − θβm(δj , δj+1).(3.3)
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The CFL condition (2.5) reduces to 0 ≤ α ≤ 1 because α = 1
2 + a∆t

∆x and |a∆t
∆x | ≤ 1

2 .
The main result in this section is the following stability result.

Theorem 3.1. If the initial condition u0 ∈ L1
loc(R), then the l2 norm of the

jumps of the approximate solution v(·, t) is nonincreasing in time. That is,

‖{δ′j}‖l2 ≡ ‖{vn+1
j − vn+1

j−1 }‖l2 ≤ ‖{δj}‖l2 ≡ ‖{vnj − vnj−1}‖l2(3.4)

for all n ≥ 1.
Proof. It is clear that we have to prove the result for one step, assuming that

‖{δj}‖l2 < ∞. We split the proof into two parts. First, we prove the stability for a
monotone sequence {wj}. By symmetry, it is sufficient to consider the case δj ≥ 0
for all j ∈ Z. Then we apply that result locally to derive the l2 stability for a general
sequence.

Theorem 3.2. Let us assume that δj ≥ 0, j ∈ Z, and δ′j are given by (3.3).
Then

‖{δ′j}‖l2 ≤ ‖{δj}‖l2 .(3.5)

Proof. Let us recall that {δj}∞−∞ ∈ l2 and δj ≥ 0 for all j. It is enough to prove
Theorem 3.2 only for 0 < α < 1. Let β1 := θβ; then 0 < β1 ≤ β. We construct the
new sequence {δ′j} by using the rule

δ′j = (1 − α)δj + αδj−1 − β1 min(δj−2, δj−1) + 2β1 min(δj−1, δj) − β1 min(δj , δj+1)
(3.6)

for each j. First we assume that {δj} has finite support. It is easy to see how to
modify the proof in case the support is not finite. Therefore we assume δj = 0 for
j ≤ 3 and for j ≥ N − 3 for some integer N . Then δ′j = 0 for j ≤ 3 and j ≥ N − 2.
Thus it suffices to prove

N∑
j=1

δ2
j ≥

N∑
j=1

(δ′j)
2.(3.7)

Let us introduce some notation. Let yj = min(δj , δj+1), ∆δj = δj − δj−1, ∆yj =
yj − yj−1, ∆2δj = δj − 2δj−1 + δj−2, and ∆2yj = yj − 2yj−1 + yj−2. Then (3.6)
becomes

δ′j = ((1 − α)δj + αδj−1) − β1∆
2yj and

N∑
j=1

(δ′j)
2 =

N∑
j=1

(
((1 − α)δj + αδj−1)

2 − 2β1((1 − α)δj + αδj−1)∆
2yj + β2

1(∆2yj)
2
)
.

Note that since δ0 = δ1 = 0 and δN−1 = δN = 0, we have

N∑
j=1

δ2
j − ((1 − α)δj + αδj−1)

2 =

N∑
j=1

(1 − (1 − α)2 − α2)δ2
j − 2α(1 − α)δjδj−1

= 2β

N∑
j=1

(2δ2
j − 2δjδj−1) = 2β

N∑
j=1

(δj − δj−1)
2 = 2β

N∑
j=1

(∆δj)
2.
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Thus we get

N∑
j=1

δ2
j −

N∑
j=1

(δ′j)
2 =

N∑
j=1

(
2β(∆δj)

2 + 2β1((1 − α)δj + αδj−1)∆
2yj − β2

1(∆2yj)
2
)
.

(3.8)

To prove Theorem 3.2, we need to prove

N∑
j=1

(
2β(∆δj)

2 + 2β1((1 − α)δj + αδj−1)∆
2yj − β2

1(∆2yj)
2
)
≥ 0.

Note that

N∑
j=1

(
2β(∆δj)

2 + 2β1((1 − α)δj + αδj−1)∆
2yj − β2

1(∆2yj)
2
)

= β1

⎛
⎝ N∑

j=1

(
2

(
β

β1

)
(∆δj)

2 + 2((1 − α)δj + αδj−1)∆
2yj − β1(∆

2yj)
2

)⎞⎠

≥ β1

⎛
⎝ N∑

j=1

(
2(∆δj)

2 + 2((1 − α)δj + αδj−1)∆
2yj − β(∆2yj)

2
)⎞⎠

=

(
β1

β

) N∑
j=1

(
2β(∆δj)

2 + 2β((1 − α)δj + αδj−1)∆
2yj − β2(∆2yj)

2
)
.

Therefore it is sufficient to prove the theorem in the case β1 = β, which is the worst
case in a certain sense. Now we use ∆2yj = ∆yj − ∆yj−1, ∆yj = 0, δj = 0 for j ≤ 1,
j ≥ N − 1, and Abel’s transform to obtain

N∑
j=1

δj∆
2yj =

N∑
j=1

(δj − δj+1)∆yj and

N∑
j=1

δj−1∆
2yj =

N∑
j=1

(δj−1 − δj)∆yj .

Thus, (3.8) becomes

N∑
j=1

δ2
j −

N∑
j=1

(δ′j)
2 = 2β

⎛
⎝ N∑

j=1

(∆δj)
2 − (1 − α)

N∑
j=1

∆δj+1∆yj

− α

N∑
j=1

∆δj∆yj −
β

2

N∑
j=1

(∆2yj)
2

⎞
⎠ .

Recall that yj = min(δj , δj+1), ∆δj = δj−δj−1, ∆yj = yj−yj−1, ∆2δj = δj−2δj−1 +
δj−2, and ∆2yj = yj−2yj−1 +yj−2. To finish the proof of Theorem 3.2, it is sufficient
to prove the following two lemmas.

Lemma 3.3.

N∑
j=1

(∆δj)
2 − (1 − α)

N∑
j=1

∆δj+1∆yj − α

N∑
j=1

∆δj∆yj − β

N∑
j=1

(∆2δj)
2 ≥ 0.
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Lemma 3.4.

2

N∑
j=1

(∆2δj)
2 ≥

N∑
j=1

(∆2yj)
2.

Proof of Lemma 3.3. We consider that
∑

j denotes
∑N

j=1. Define

A =
∑
j

∆δj+1∆yj and B =
∑
j

∆δj∆yj .

Our aim is to prove that∑
j

(∆δj)
2 − (1 − α)A− αB − β

∑
j

(∆2δj)
2 ≥ 0.(3.9)

Let u+ = max(u, 0), u− = min(u, 0). It is easy to check that

∆yj = (∆δj)+ + (∆δj+1)−.(3.10)

We can transform A as follows:

A =
∑
j

∆δj+1((∆δj)+ + (∆δj+1)−)

=
∑
j

∆δj+1(∆δj)+ +
∑
j

∆δj(∆δj)− =
∑

∆δj≤0

(∆δj)
2 +

∑
∆δj≥0

∆δj∆δj+1

=
∑

∆δj≤0

(∆δj)
2 +

∑
∆δj≥0,∆δj+1≤0

∆δj∆δj+1 + D,(3.11)

where D =
∑

∆δj≥0,∆δj+1≥0 ∆δj∆δj+1. Further,

D =
1

2

∑
∆δj≥0,∆δj+1≥0

(
(∆δj)

2 + (∆δj+1)
2 − (∆2δj+1)

2
)

=
1

2

∑
∆δj−1≥0,∆δj≥0

(
(∆δj−1)

2 + (∆δj)
2 − (∆2δj)

2
)

=
1

2

∑
∆δj≥0,∆δj+1≥0

(∆δj)
2 +

1

2

∑
∆δj≥0,∆δj−1≥0

(∆δj)
2 − 1

2

∑
∆δj−1≥0,∆δj≥0

(∆2δj)
2.

By (3.11),

A =
∑
j

(∆δj)
2 − 1

2

∑
∆δj≥0,∆δj+1<0

(∆δj)
2 − 1

2

∑
∆δj≥0,∆δj−1<0

(∆δj)
2

− 1

2

∑
∆δj−1≥0,∆δj≥0

(∆2δj)
2 +

∑
∆δj≥0,∆δj+1≤0

∆δj∆δj+1.(3.12)

Transform B in the same way as A:

B =
∑

∆δj≥0

(∆δj)
2 +

∑
∆δj≥0,∆δj+1≤0

∆δj∆δj+1 + E,(3.13)
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where E =
∑

∆δj≤0,∆δj+1≤0 ∆δj∆δj+1. The quantity E can also be rewritten in the
same way as D:

E =
1

2

∑
∆δj≤0,∆δj+1≤0

(∆δj)
2 +

1

2

∑
∆δj−1≤0,∆δj≤0

(∆δj)
2 − 1

2

∑
∆δj−1≤0,∆δj≤0

(∆2δj)
2.

Combining this equality with (3.13), we get

B =
∑
j

(∆δj)
2 − 1

2

∑
∆δj≤0,∆δj+1>0

(∆δj)
2 − 1

2

∑
∆δj≤0,∆δj−1>0

(∆δj)
2

− 1

2

∑
∆δj−1≤0,∆δj≤0

(∆2δj)
2 +

∑
∆δj+1≤0,∆δj≥0

∆δj∆δj+1.(3.14)

By (3.12) and (3.14),∑
j

(∆δj)
2 − (1 − α)A− αB − β

∑
j

(∆2δj)
2 = F + G + H + I + J + K + L,(3.15)

where

F =
1 − α

2

∑
∆δj≥0,∆δj+1<0

(∆δj)
2, G =

1 − α

2

∑
∆δj≥0,∆δj−1<0

(∆δj)
2,

H =
α

2

∑
∆δj≤0,∆δj+1>0

(∆δj)
2, I =

α

2

∑
∆δj≤0,∆δj−1>0

(∆δj)
2,

J = −
∑

∆δj+1≤0,∆δj≥0

∆δj∆δj+1 +

(
1 − α

2
− β

) ∑
∆δj−1≥0,∆δj≥0

(∆2δj)
2

+

(
α

2
− β

) ∑
∆δj−1≤0,∆δj≤0

(∆2δj)
2,

K = −β
∑

∆δj−1>0,∆δj<0

(∆2δj)
2, and L = −β

∑
∆δj−1<0,∆δj>0

(∆2δj)
2.

We have to prove that F + G + H + I + J + K + L ≥ 0. Among the sums
F,G,H, I, J,K,L, only the two last sums might be negative; we will show that and

F + I + K ≥ 0,(3.16)

G + H + L ≥ 0.(3.17)

Indeed,

1 − α

2
(∆δj−1)

2 +
α

2
(∆δj)

2 − β(∆2δj)
2 =

1 − α

2
(∆δj−1)

2 +
α

2
(∆δj)

2

− (1 − α)α

2
(∆δj − ∆δj−1)

2 =
1

2
((1 − α)∆δj−1 + α∆δj))

2 ≥ 0.

Summing the last inequality over all j with ∆δj−1 > 0, ∆δj < 0, we get (3.16). The
inequality (3.17) can be proved similarly.
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Additionally, we have

J ≥ 0.(3.18)

Finally, plugging (3.16), (3.17), and (3.18) into (3.15), we obtain the required
(3.9). This completes the proof of Lemma 3.3.

Proof of Lemma 3.4. First, recall that ∆2yj = 0 for j ≤ 1 and j ≥ N . Also, from
the proof of Lemma 3.3 we have

∆yj =

⎧⎪⎪⎨
⎪⎪⎩

∆δj+1 if ∆δj+1 ≤ 0, ∆δj ≤ 0,
∆δj+1 + ∆δj if ∆δj+1 ≤ 0, ∆δj ≥ 0,
∆δj if ∆δj+1 ≥ 0, ∆δj ≥ 0,
0 if ∆δj+1 ≥ 0, ∆δj ≤ 0.

Similarly,

∆yj−1 =

⎧⎪⎪⎨
⎪⎪⎩

∆δj if ∆δj ≤ 0, ∆δj−1 ≤ 0,
∆δj + ∆δj−1 if ∆δj ≤ 0, ∆δj−1 ≥ 0,
∆δj−1 if ∆δj ≥ 0, ∆δj−1 ≥ 0,
0 if ∆δj ≥ 0, ∆δj−1 ≤ 0.

Therefore ∆δj−1, ∆δj , ∆δj+1 and their signs uniquely determine ∆2yj . We have
eight cases depending on what the signs of ∆δj−1, ∆δj , ∆δj+1 are.

• Case I. (+,+,+), that is, ∆δj−1 ≥ 0, ∆δj ≥ 0, ∆δj+1 ≥ 0. Then, ∆yj =
∆δj , ∆yj−1 = ∆δj−1, and so ∆2yj = ∆2δj ; thus, (∆2yj)

2 ≤ (∆2δj)
2 in this

case.
• Case II. (+,+,−), that is, ∆δj−1 ≥ 0, ∆δj ≥ 0, ∆δj+1 < 0. Then, ∆yj =

∆δj+1 + ∆δj , ∆yj−1 = ∆δj−1, and so ∆2yj = ∆δj+1 + ∆δj − ∆δj−1.
• Case III. (+,−,+), that is, ∆δj−1 ≥ 0, ∆δj < 0, ∆δj+1 ≥ 0. Then, ∆yj =

0, ∆yj−1 = ∆δj + ∆δj−1, and so ∆2yj = −∆δj − ∆δj−1. In this case
(∆2yj)

2 − (∆2δj)
2 = 4∆δj∆δj−1 ≤ 0 and (∆2yj)

2 ≤ (∆2δj)
2.

• Case IV. (+,−,−), that is, ∆δj−1 ≥ 0, ∆δj < 0, ∆δj+1 < 0. Then, ∆yj =
∆δj+1, ∆yj−1 = ∆δj + ∆δj−1, and so ∆2yj = ∆δj+1 − ∆δj − ∆δj−1.

• Case V. (−,+,+), that is, ∆δj−1 < 0, ∆δj ≥ 0, ∆δj+1 ≥ 0. Then, ∆yj =
∆δj , ∆yj−1 = 0, and so ∆2yj = ∆δj . In this case 0 ≤ ∆δj < ∆δj − ∆δj−1

and (∆2yj)
2 ≤ (∆2δj)

2.
• Case VI. (−,+,−), that is, ∆δj−1 < 0, ∆δj ≥ 0, ∆δj+1 < 0. Then, ∆yj =

∆δj+1 +∆δj , ∆yj−1 = 0, and so ∆2yj = ∆δj+1 +∆δj . In this case (∆2yj)
2−

(∆2δj+1)
2 = 4∆δj+1∆δj ≤ 0 and (∆2yj)

2 ≤ (∆2δj+1)
2.

• Case VII. (−,−,+), that is, ∆δj−1 < 0, ∆δj < 0, ∆δj+1 ≥ 0. Then, ∆yj =
0, ∆yj−1 = ∆δj , and so ∆2yj = −∆δj . In this case 0 < −∆δj ≤ ∆δj+1−∆δj
and (∆2yj)

2 ≤ (∆2δj+1)
2.

• Case VIII. (−,−,−), that is, ∆δj−1 < 0, ∆δj < 0, ∆δj+1 < 0. Then,
∆yj = ∆δj+1, ∆yj−1 = ∆δj , and so ∆2yj = ∆2δj+1. In this case (∆2yj)

2 ≤
(∆2δj+1)

2.
Therefore in Cases I (+,+,+), III (+,−,+), and V (−,+,+), (∆2yj)

2 ≤ (∆2δj)
2,

and in Cases VI (−,+,−), VII (−,−,+), and VIII (−,−,−), (∆2yj)
2 ≤ (∆2δj+1)

2.
There are only two “bad” cases: II (+,+,−) and IV (+,−,−), which need a special
treatment.

Next, we define a sequence of + and − signs {sj}, where sj = + if ∆δj ≥ 0 and
sj = − if ∆δj < 0. Note that sj = + for j ≤ 3 and j ≥ N − 2. There are three types
of “bad” quadruples:
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• Type A quadruple: (+,+,−,−), that is, ∆δj−1 ≥ 0, ∆δj ≥ 0, ∆δj+1 < 0,
∆δj+2 < 0 for some j. We claim that in this case the following inequality
holds:

(∆2yj)
2 + (∆2yj+1)

2 ≤ 2(∆2δj)
2 + 2(∆2δj+1)

2 + 2(∆2δj+2)
2.(3.19)

In this case ∆2yj = ∆δj+1+∆δj−∆δj−1 and ∆2yj+1 = ∆δj+2−∆δj+1−∆δj .
If we denote ∆δj−1 by a, ∆δj by b, ∆δj+1 by c, and ∆δj+2 by d, the above
inequality becomes

(c + b− a)2 + (d− c− b)2 ≤ 2(b− a)2 + 2(c− b)2 + 2(d− c)2

for a ≥ 0, b ≥ 0, c < 0, d < 0,

which is equivalent to a2 +2b2 +2c2 +d2 −2ab+2ac−8bc+2bd−2cd ≥ 0, or

(a− b + c)2 + (b− c + d)2 − 4bc ≥ 0,

which holds since b ≥ 0, c < 0.
• Type B quadruple: (+,+,−,+), that is, ∆δj−1 ≥ 0, ∆δj ≥ 0, ∆δj+1 < 0,

∆δj+2 ≥ 0 for some j. We claim that in this case the following inequality
holds:

(∆2yj)
2 + (∆2yj+1)

2 ≤ 2(∆2δj)
2 + 2(∆2δj+1)

2 + (∆2δj+2)
2.(3.20)

In this case ∆2yj = ∆δj+1 + ∆δj − ∆δj−1 and ∆2yj+1 = −∆δj+1 − ∆δj .
Using the notation we just introduced, the inequality becomes

(c + b− a)2 + (c + b)2 ≤ 2(b− a)2 + 2(c− b)2 + (d− c)2

for a ≥ 0, b ≥ 0, c < 0, d ≥ 0.

Since (d− c)2 ≥ c2, it is sufficient to prove

(c + b− a)2 + (c + b)2 ≤ 2(b− a)2 + 2(c− b)2 + c2, or

a2 + 2b2 + c2 − 2ab + 2ac− 8bc ≥ 0, or (a− b + c)2 + b2 − 6bc ≥ 0,

which holds for b ≥ 0, c < 0.
• Type C quadruple: (−,+,−,−), that is, ∆δj−1 < 0, ∆δj ≥ 0, ∆δj+1 < 0,

∆δj+2 < 0 for some j. We claim that in this case the following inequality
holds:

(∆2yj)
2 + (∆2yj+1)

2 ≤ (∆2δj)
2 + 2(∆2δj+1)

2 + 2(∆2δj+2)
2.(3.21)

In this case ∆2yj = ∆δj+1 +∆δj and ∆2yj+1 = ∆δj+2 −∆δj+1 −∆δj . Using
the notation we just introduced, the inequality becomes

(c + b)2 + (d− c− b)2 ≤ (b− a)2 + 2(c− b)2 + 2(d− c)2

for a < 0, b ≥ 0, c < 0, d < 0.

Since (b− a)2 ≥ b2, it is sufficient to prove

(c + b)2 + (d + c− b)2 ≤ b2 + 2(c− b)2 + 2(d− c)2, or

b2 + 2c2 + d2 − 8bc + 2bd− 2cd ≥ 0, or (b− c + d)2 + c2 − 6bc ≥ 0,

which holds for b ≥ 0, c < 0.
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We will call the Type A (3.19), Type B (3.20), and Type C (3.21) inequalities
“long” inequalities; we call the inequalities of type (∆2yj)

2 ≤ (∆2δj)
2 and (∆2yj)

2 ≤
(∆2δj+1)

2 “short” inequalities.
Now, we construct a set of inequalities. We identify all “bad” quadruples and

include the corresponding inequality (Type A, B, or C) in the set. Next, for all
j ∈ [1, N ] such that sj is not a middle element of a “bad” quadruple, and such that j
does not belong to the “bad” Cases II and IV, we include the corresponding “short”
inequality in the set. Finally, we add all inequalities in the set. Taking into account
that ∆2δj = 0 and ∆2yj = 0 for j > N , the resulting inequality is

N∑
j=1

aj(∆
2yj)

2 ≤
N∑
j=1

bj(∆
2δj)

2,(3.22)

where the aj ’s and bj ’s are nonnegative integers. To finish the proof of the lemma we
need to show aj ≥ 1 and bj ≤ 2 for all j ∈ [1, N ].

Note that all “long” inequalities have the form (∆2yj)
2 +(∆2yj+1)

2 ≤ · · · , where
sj and sj+1 are the middle elements of a “bad” quadruple. Then aj ≥ 1 if sj is a
middle element of a “bad” quadruple. (By middle element of a quadruple we mean
second or third element of the quadruple.)

Now, suppose that sj is not a middle element of a “bad” quadruple. Then j does
not belong to the “bad” Cases II and IV. Indeed if j is in Case II: (sj−1, sj , sj+1) =
(+,+,−), then sj is a middle element of Type B quadruple if sj+2 = + and a
middle element of Type A quadruple if sj+2 = −. Similarly, if j is in Case IV:
(sj−1, sj , sj+1) = (+,−,−), then sj is a middle element of Type A quadruple if
sj−1 = + and a middle element of Type C quadruple if sj−1 = −. Therefore a
“short” inequality for (∆2yj)

2 has been included in the set of inequalities. Thus
aj ≥ 1 in this case as well. We have proved aj ≥ 1 for all j ∈ [1, N ].

Now, we prove bj ≤ 2 for all j ∈ [1, N ]. Note that (∆2δj)
2 can appear in only two

“short” inequalities: (∆2yj)
2 ≤ (∆2δj)

2 and (∆2yj−1)
2 ≤ (∆2δj)

2. Therefore bj ≤ 2
if (∆2δj)

2 does not appear in any “long” inequalities, that is, if sj is not a second,
third, or fourth element of a “bad” quadruple.

The case when sj is a second, third, or fourth element of a “bad” quadruple
requires more work. First, note that two distinct “bad” quadruples have at most two
common elements. Indeed all “bad” quadruples are of the form (∗,+,−, ∗), where ∗
denotes + or −, and no “bad” quadruple has (+,−) as its first two or last two elements.
Next, the only case when two “bad” quadruples have two common elements is the
following configuration:

(sj−1, sj , sj+1, sj+2, sj+3, sj+4) = (+,+,−,+,−,−).(3.23)

Indeed, a Type A quadruple cannot share exactly two elements with another “bad”
quadruple because no “bad” quadruple has (−,−) as its first two elements, or (+,+)
as its last two elements. Similar analysis shows that the only way a Type B or Type C
quadruple can share exactly two elements with another Type B or Type C quadruple
is when the configuration (3.23) occurs.

Let us analyze the configuration (3.23). The “long” inequalities which correspond
to the two “bad” quadruples in this configuration are

(∆2yj)
2 + (∆2yj+1)

2 ≤ 2(∆2δj)
2 + 2(∆2δj+1)

2 + (∆2δj+2)
2,(3.24)

(∆2yj+2)
2 + (∆2yj+3)

2 ≤ (∆2δj+2)
2 + 2(∆2δj+3)

2 + 2(∆2δj+4)
2.(3.25)
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Their sum is

(∆2yj)
2 + (∆2yj+1)

2 + (∆2yj+2)
2 + (∆2yj+3)

2

≤ 2(∆2δj)
2 + 2(∆2δj+1)

2 + 2(∆2δj+2)
2 + 2(∆2δj+3)

2 + 2(∆2δj+4)
2.

In this case sj , sj+1, sj+2, sj+3, and sj+4 appear as second, third, or fourth elements
of a “bad” quadruple. Since the configuration (3.23) starts with (+,+) and ends with
(−,−), it cannot share two elements with a “bad” quadruple outside the configuration.
This means that none of sj , sj+1, sj+2, sj+3, and sj+4 can be a second, third, or
fourth element of a “bad” quadruple outside the configuration. In other words, none
of (∆2δj)

2, (∆2δj+1)
2, (∆2δj+2)

2, (∆2δj+3)
2, and (∆2δj+4)

2 can appear in a “long”
inequality other than (3.24) and (3.25). Since, sj , sj+1, sj+2, and sj+3 are middle
elements of “bad” quadruples, (∆2δj+1)

2, (∆2δj+2)
2, and (∆2δj+3)

2 cannot appear
in “short” inequalities either. Thus bj+1 = bj+2 = bj+3 = 2. Also, (∆2δj)

2 cannot
appear in a “short” inequality. The only way this could happen is (∆2yj−1)

2 ≤
(∆2δj)

2, which is impossible since j−1 is either in Case I (+,+,+) or Case V (−,+,+),
depending on what sj−2 is, and in both cases the short inequality is (∆2yj−1)

2 ≤
(∆2δj−1)

2. Thus bj = 2. Similarly, (∆2δj+4)
2 cannot appear in a “short” inequality.

The only way this could happen is (∆2yj+4)
2 ≤ (∆2δj+4)

2, which is impossible since
j + 4 is either in Case VII (−,−,+) or Case VIII (−,−,−), depending on what sj+5

is, and in both cases the short inequality is (∆2yj+4)
2 ≤ (∆2δj+5)

2. Thus bj+4 = 2.
This concludes the analysis of the configuration (3.23).

Now, let sj be a second, third, or fourth element of a “bad” quadruple but not
an element of a configuration (3.23). This means that (∆2δj)

2 appears in exactly
one “long” inequality (it cannot be a second, third, or fourth element of two distinct
“bad” quadruples). If sj is a third element of a “bad” quadruple, then sj−1 and sj
are the middle elements of the quadruple and (∆2δj)

2 does not appear in a short
inequality. Thus, bj ≤ 2 in this case. The cases when sj is a second or fourth element
of a “bad” quadruple need separate consideration.

1. sj is a second element of a Type A quadruple (+,+,−,−). The only way
(∆2δj)

2 could appear in a “short” inequality is (∆2yj−1)
2 ≤ (∆2δj)

2, which
is impossible since j− 1 is either in Case I (+,+,+) or Case V (−,+,+), de-
pending on what sj−2 is, and in both cases the short inequality is (∆2yj−1)

2 ≤
(∆2δj−1)

2. Thus bj = 2.
2. sj is a fourth element of a Type A quadruple (+,+,−,−). The only way

(∆2δj)
2 could appear in a “short” inequality is (∆2yj)

2 ≤ (∆2δj)
2, which

is impossible since j is either in Case VII (−,−,+) or Case VIII (−,−,−),
depending on what sj+1 is, and in both cases the short inequality is (∆2yj)

2 ≤
(∆2δj+1)

2. Thus bj = 2.
3. sj is a second element of a Type B quadruple (+,+,−,+). Here the argument

is word-by-word like in part 1. The only way (∆2δj)
2 could appear in a

“short” inequality is (∆2yj−1)
2 ≤ (∆2δj)

2, which is impossible since j − 1
is either in Case I (+,+,+) or Case V (−,+,+), depending on what sj−2

is, and in both cases the short inequality is (∆2yj−1)
2 ≤ (∆2δj−1)

2. Thus
bj = 2.

4. sj is a fourth element of a Type B quadruple (+,+,−,+). Since the coefficient
of (∆2δj)

2 in the corresponding “long” inequality (3.20) is 1 and (∆2δj)
2 could

appear in at most one “short” inequality, we conclude bj ≤ 2.
5. sj is a second element of a Type C quadruple (−,+,−,−). Since the coeffi-

cient of (∆2δj)
2 in the corresponding “long” inequality (3.21) is 1 and (∆2δj)

2

could appear in at most one “short” inequality, we conclude bj ≤ 2.
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6. sj is a fourth element of a Type C quadruple (−,+,−,−). Here the argument
is word-by-word like in Case 2. The only way (∆2δj)

2 could appear in a
“short” inequality is (∆2yj)

2 ≤ (∆2δj)
2, which is impossible since j is either

in Case VII (−,−,+) or Case VIII (−,−,−), depending on what sj+1 is, and
in both cases the short inequality is (∆2yj)

2 ≤ (∆2δj+1)
2. Thus bj = 2.

We have shown that in all six cases bj ≤ 2 for j ∈ [1, N ], which completes the proof
of Lemma 3.4 and Theorem 3.2.

Now, we continue with the general case, the proof of Theorem 3.1. That is, we
want to show that the l2 norms inequality

‖{δ′j}‖l2 ≤ ‖{δj}‖l2(3.26)

holds for any initial sequence {δj} with finite l2 norm. We consider the sequence {wj}
and restrict the index j to a maximal subset Λm on which the piecewise constant
function w is monotone, recalling that δj = wj − wj−1. Given a sequence {wj},
we can decompose it into monotone subsequences. This decomposition also gives a
decomposition of the sequence {δj} into subsequences such that in each subsequence
all jumps have the same sign (nonnegative or nonpositive). Without any limitations,
we assume that the jumps {δj} are nonnegative for all l ≤ j ≤ r, δl−1 < 0, and
δr+1 < 0. That is, wl−1 is a local minimum and wr is a local maximum of the
piecewise constant function w. Let wm be the following piecewise constant correction
of w:

wm
j :=

⎧⎨
⎩

wj if l ≤ j ≤ r,
wl−1 if j < l,
wr if j > r.

(3.27)

Note that Λm = {j : l ≤ j ≤ r + 1}, and the jump sequence δm := {δmj } of wm is
given by

δmj :=

{
wj − wj−1 if l ≤ j ≤ r,
0 otherwise.

(3.28)

Hence, we have a sequence of monotone functions {wm} and the corresponding jump
sequences {δmj }j such that∑

m

∑
j∈Λm

‖{δmj }‖2
l2 =

∑
m,j∈Z

‖{δmj }‖2
l2 = ‖{δj}‖2

l2 ,

because the sequence of the jumps of {δj} is decomposed into disjoint jump subse-
quences {δmj }. There are two types of jumps δ′j . A jump δ′j is of type 1 if it is equal to
the jump δ′j(δ

m), that is, the jump generates with the starting sequence {δmj }, where
the index m such that j ∈ Λm. A jump is of type 2 if it is not of type 1. Note that a
type 2 jump δ′j∗ occurs only inside an interval which contains a strict local extremum.

Near a local extremum we have two nonzero jumps, say δlj∗ and δrj∗ , generated by
the two monotone wm’s with index sets finishing/starting with j∗. It is easy to verify
that

|δ′j∗ | =
∣∣|δlj∗ | − |δrj∗ |

∣∣.
Hence, we have that

(δ′j∗)
2 < (δlj∗)

2 + (δrj∗)
2,
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and we conclude that∑
j

(δ′j)
2 ≤

∑
m

∑
j∈Λm

(δ′j(δ
m))2 ≤

∑
m

∑
j∈Λm

(δmj )2 =
∑
n

(δj)
2,

where we use the notation δ′j(δ
m) for the new jumps generated by δm. It is also easy

to prove a local inequality but with index set for δ′j starting from an interval right
after an extremum and finishing right before one.

4. Error estimates for linear flux. Recall that u is the entropy solution to
the conservation law ut + f(u)x = 0 with initial condition u0, and v is the numerical
solution described in (2.12). In the case of linear flux and 0 ≤ θ ≤ 1, the formula for
the new averages of the minmod scheme is given in (3.1), and the conservation law
(2.1) reduces to

ut + aux = 0.(4.1)

Let Sτ be the shift operator defined by Sτg(·) := g(· − τ). Then the exact solution
of (4.1) at time t for any initial data u0 is u(·, t) = Satu

0. Let Ah be the averaging
operator defined on a uniform partition by Ahg|I := 1

h

∫
I
g(s)ds, where |I| = h. It will

be useful to define a global approximate solution v. We first define the approximate
solution at discrete times by vn := v(·, n∆t), n = 0, 1, . . . , N , in the following way:
(i) v0 := u0; (ii) vn := Sa∆tPhv

n−1, where for odd n, 1 ≤ n ≤ N , Phv is the
linear function on Ij := (xj−1/2, xj+1/2) defined in (2.3) with the minmod slopes
(2.8), and for even n we have the analogous definition of Ph on the shifted partition
{Ij+1/2| j ∈ Z}. Note that Phv

n = PhAhv
n because the piecewise linear projection Ph,

defined in (2.3) and (2.8), is based only on the averages of vn on the corresponding
partition. The formula (3.1) for the new cell averages can be written as

vnj+1/2 = Ah(vn)|Ij+1/2
= Ah(Sa∆tPhv

n−1)|Ij+1/2

for odd n, with Ah based on the staggered partition {Ij+1/2| j ∈ Z} and Ph based
on regular partition {Ij | j ∈ Z}. For even n, we have the same sequence of operators
but on the reversed partitions. The global approximate solution v is defined by
v(·, n∆t) = vn and v(·, t) = Sa(t−n∆t)(Phv

n) for n∆t < t ≤ (n + 1)∆t and n =
0, 1, . . . , N − 1. That is, v solves (4.1) exactly for n∆t < t ≤ (n + 1)∆t with initial
data Phv

n, n = 0, 1, . . . , N − 1.
In order to describe the next result, we need to introduce some notation. A

function g is of bounded variation, i.e., g ∈ BV(R), if

|g|BV(R) := sup

n∑
i=1

|g(xi+1) − g(xi)| < ∞,

where the supremum is taken over all finite sequences x1 < · · · < xn in R. Functions
of bounded variation have at most countably many discontinuities, and their left and
right limits g(x−) and g(x+) exist at each point x ∈ R. Since the values of the initial
condition u0 on a set of measure zero have no influence on the numerical solution v
and the entropy solution u, it is desirable to replace the seminorm |·|BV(R) by a similar
quantity independent of the function values on sets of measure zero. The standard
approach in conservation laws is to consider the space Lip(1,L1(R)) of all functions
g ∈ L1(R) such that the seminorm

|g|Lip(1,L1(R)) := lim sup
s>0

1

s

∫
R

|g(x + s) − g(x)| dx(4.2)



1992 SERGEI KONYAGIN, BOJAN POPOV, AND OGNIAN TRIFONOV

is finite. It is clear that |g|Lip(1,L1(R)) will not change if g is modified on a set of
measure zero. At the same time the above two seminorms are equal for functions
g ∈ BV(R) such that the value of g at a point of discontinuity lies between g(x−)
and g(x+) (see Theorem 9.3 in [5]). Similarly, we define the space Lip(1,Lp(R)),
1 ≤ p ≤ ∞, which is the set of all functions g ∈ Lp(R) for which

‖g(· − s) − g(·)‖Lp(R) ≤ Ms, s > 0.(4.3)

The smallest M ≥ 0 for which (4.3) holds is |g|Lip(1,Lp(R)). It is easy to see that in
the case p = 1 the seminorm given in (4.3) is the same as the one in (4.2). In the
case p > 1, the space Lip(1,Lp(R)) is essentially the same as W 1(Lp(R)); see [5] for
details. With this notation, we have the following result.

Theorem 4.1. Let u(x, t) = u(x− at, 0) be the solution to (2.1) with linear flux
f(z) = az, and let v be the numerical solution described in (3.1) with 0 ≤ θ ≤ 1. If
the CFL condition (2.5) is satisfied, tn = n∆t, 0 ≤ n ≤ N , and T = N∆t, we have

‖u(·, T ) − v(·, T )‖Lp(R) ≤ C(Nh)1/2h1/2|u0|Lip(1,Lp(R))(4.4)

for p = 1, 2, where C is an absolute constant.
Proof. The L1 estimate is based on the TVD property of the numerical solution v,

and the L2 estimate is based on the l2 stability of the jumps proved in Theorem 3.1.
Both estimates use a dual argument similar to the one in [19], and in the proof we
use an index p, where p ∈ {1, 2}. Note that we consider the case of linear flux, and
the usual Lip+ stability requirement is not needed in the dual approach because the
negative norm stability (4.6) holds for any initial data (not just Lip+). In the proof,
C will be an absolute constant that can be different at different places.

Let e(x, t) := u(x, t) − v(x, t) and E(x, t) :=
∫ x

−∞ e(s, t)ds, where we assume

that u0 ∈ L1(R) to guarantee that E is well defined for all (x, t) ∈ R × (0, T ).
We have that E also satisfies (4.1) for n∆t < t ≤ (n + 1)∆t with initial data∫ x

−∞ u(s, n∆t) − Phv
n(s)ds, n = 0, 1, . . . , N − 1. For a function g ∈ L1(R) and

1 ≤ p ≤ ∞, we define a minus one norm in the following way:

‖g‖−1,p :=

∥∥∥∥
∫ ·

−∞
g(s) ds

∥∥∥∥
Lp(R)

.(4.5)

It is easy to verify that for any τ ∈ R

‖Sτg‖−1,p = ‖g‖−1,p.(4.6)

Recall that T = N∆t. Then we have the representations u(·, T ) = (Sa∆t)
Nu0 and

v(·, T ) = (Sa∆tPh)Nu0. Using (4.6), we have

‖e(·, T )‖−1,p = ‖(Sa∆t)
Nu0 − (Sa∆tPh)Nu0‖−1,p

= ‖(Sa∆t)
N−1u0 − Ph(Sa∆tPh)N−1u0‖−1,p,

and by the triangle inequality we obtain

‖e(·, T )‖−1,p ≤ ‖(Sa∆t)
N−1u0 − (Sa∆tPh)N−1u0‖−1,p(4.7)

+ ‖Ph(Sa∆tPh)N−1u0 − (Sa∆tPh)N−1u0‖−1,p.

Let en = ((Sa∆t)
n − (Sa∆tPh)n)u0, n = 0, 1, . . . , N . Then (4.7) is equivalent to

‖eN‖−1,p ≤ ‖eN−1‖−1,p + ‖Phv
N−1 − vN−1‖−1,p,(4.8)
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and applying (4.8) for n = N,N − 1, . . . , 1, we get

‖eN‖−1,p ≤
N−1∑
n=1

‖Phv
n − vn‖−1,p(4.9)

because e0 ≡ 0. To prove the error estimates, we need the following technical lemma.
Lemma 4.2. For any p ∈ {1, 2} and any n = 0, 1, . . . , N , we have

(i) ‖{δnj }‖lp ≤ h1− 1
p |u0|Lip(1,Lp(R)),

(ii) ‖Phv
n −Ahv

n‖−1,p ≤
(

2

p + 1

) 1
p

h1+ 1
p ‖{δj}‖lp ,

(iii) ‖Ahv
n − vn‖−1,p ≤

(
4

p + 1

) 1
p

h2|u0|Lip(1,Lp(R)).

Proof. The inequalities (i) and (ii) follow by standard arguments; therefore, we
only prove (i) in the case p = 2 and omit the rest because their proofs are similar.
Recall that δnj = vnj − vnj−1, and by Theorem 3.1 we have

⎛
⎝∑

j

(δnj )2

⎞
⎠

1/2

≤

⎛
⎝∑

j

(δ0
j )

2

⎞
⎠

1/2

,

where δ0
j = u0

j − u0
j−1, u

0
j := 1

h

∫
Ij
u0(s)ds. Hence, to prove (i) for p = 2, we need to

prove ∑
j

(δ0
j )

2 ≤ h|u0|2Lip(1,L2(R)).

Since

∑
j

(δ0
j )

2 =
∑
j

(
1

h

∫
Ij

(u0(s + h) − u0(s))ds

)2

≤ h−2
∑
j

(∫
Ij

|u0(s + h) − u0(s)|ds
)2

,

and since by the Cauchy–Schwarz inequality
(∫

Ij
|u0(s+h)−u0(s)|ds

)2 ≤ h
∫
Ij
|u0(s+

h) − u0(s)|2ds, we obtain

∑
j

(δ0
j )

2 ≤ h−1

∫
R

|u0(s + h) − u0(s)|2ds.(4.10)

From (4.3), we have
∫

R
|u0(s + h) − u0(s)|2ds ≤ h2|u0|2Lip(1,L2(R)), and using that in

(4.10), we conclude ∑
j

(δ0
j )

2 ≤ h|u0|2Lip(1,L2(R)),

which proves (i) for p = 2. To prove (iii), we note that

|Ahv
n − vn|Ij ≤ max

x∈Ij
vn(x) − min

x∈Ij
vn(x),(4.11)



1994 SERGEI KONYAGIN, BOJAN POPOV, AND OGNIAN TRIFONOV

and because vn = Sa∆tv
n−1, we have that

max
x∈Ij

vn(x) − min
x∈Ij

vn(x) ≤ 2 max(|δn−1
j−1 |, |δn−1

j |).

The rest of the proof of (iii) is analogous to the proof of (i).
Combining (i)–(iii), we have ‖Phv

n − vn‖−1,p ≤ Ch2|u0|Lip(1,Lp(R)), and after
applying the above inequality in (4.9), we derive the following estimate:

‖eN‖−1,p ≤ CNh2|u0|Lip(1,Lp(R)).(4.12)

Because vN /∈ Lip(1,L2(R)), we approximate vN by

ṽ :=
1

h

∫ x+h/2

x−h/2

Ahv
N (s) ds.

Similar to Lemma 4.2, it is easy to verify that for p ∈ {1, 2} we have

‖ṽ − vN‖−1,p ≤ Ch2|u0|Lip(1,Lp(R)),(4.13)

‖ṽ − vN‖Lp(R) ≤ Ch|u0|Lip(1,Lp(R)),(4.14)

and

|ṽ|Lip(1,Lp(R)) ≤ |u0|Lip(1,Lp(R)).(4.15)

Let ẽ := u(·, T ) − ṽ. Then ‖ẽ‖−1,p ≤ ‖eN‖−1,p + ‖ṽ − vN‖−1,p, and combining the
estimates (4.12) and (4.13), we have

‖ẽ‖−1,p ≤ CNh2|u0|Lip(1,Lp(R)).(4.16)

Kolmogorov–Landau inequalities in Lp(R) (p. 156 in [5]) for the functions Ẽ(x) :=∫ x

∞ ẽ(s) ds, Ẽ′, and Ẽ′′ give

‖ẽ‖Lp = ‖Ẽ′‖Lp ≤
√

2‖Ẽ‖1/2
Lp ‖Ẽ′′‖1/2

Lp =
√

2‖ẽ‖1/2
−1,p|ẽ|

1/2
Lip(1,Lp(R)).

Using (4.16) and (4.15), we arrive at

‖ẽ‖Lp ≤ C(Nh)1/2h1/2|u0|Lip(1,Lp(R)).(4.17)

Finally, by the triangle inequality,

‖e‖Lp ≤ ‖ẽ‖Lp + ‖ṽ − vN‖Lp(R) ≤ C(Nh)1/2h1/2|u0|Lip(1,Lp(R)),

and we combine (4.14) and (4.17) to conclude

‖u(·, T ) − v(·, T )‖Lp(R) = ‖e‖Lp ≤ C(Nh)1/2h1/2|u0|Lip(1,Lp(R)).

Note that C can be computed explicitly and is not very big (C < 20). In the case
p = 2 and u0 /∈ L1(R), we get the same error estimate via an approximation procedure
because the estimate is independent of the L1 norm.

Corollary 4.3. In the case of Nh ≤ C, we get the convergence rate

‖u(·, T ) − v(·, T )‖Lp(R) ≤ Ch1/2|u0|Lip(1,Lp(R))

for p = 1 and p = 2.
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The L1 estimate is not new—it follows from the arguments in [19]—but the 1/2
rate in L2 is new. Note that, using the L1 estimate, by interpolation arguments we get
only a 1/4 rate in L2. The rate 1/2 is optimal for the case θ = 0 because the numerical
method in that case reduces to the LxF scheme, a special case of a monotone scheme.
In the case p = 1, the sharpness of the 1/2 bound is given in [20], with an extension
to the nonlinear case in [17]. The sharpness in the case p = 2 follows from the more
general result for formal first-order linear schemes; see [4]. The case θ > 0 is more
complicated because the schemes are nonlinear, and it will be addressed elsewhere.

5. Numerical examples. In this section, we present numerical evidence for the
new l2 stability result we proved in section 3. Our numerical tests suggest that in
the case of linear flux the NT schemes do not increase the l2 norm of the jumps for
either θ ≤ 1 (as proved in Theorem 3.1) or for 1 < θ ≤ 2. In the case of convex flux,
we numerically observe the one-sided analogue of this property. We now give generic
examples for this l2 stability in the linear and convex case.

Example 1. Linear equation. We take a piecewise linear initial condition u0 (see
top left of Figure 5.1) and compare three different approximate solutions. It is easy
to see that for a bigger value of θ we get smaller numerical diffusion (see top right
panel of Figure 5.1). The other two plots on Figure 5.1 give the behaviors of the l2
and the l∞ norms of the jumps in time where the time is rescaled from [0, 0.15] to
[0, 1] and the l2 norm is also rescaled. Note the oscillatory behavior of the l∞ norm
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Fig. 5.1. ut +0.5ux = 0. The solid line represents θ = 1, the dashed line represents θ = 2, and
the dash-dotted line stands for θ = 0, the staggered LxF scheme. The values we used are ∆x = 0.005,
λ = 0.15, final time T = 0.15, and the flux is f(u) = 0.5u.
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Fig. 5.2. ut + (0.5u2)x = 0.

and the monotonicity of the l2 norm for θ = 1, 2.
The presence of shocks or local extrema in the initial data will only make the

decrease of the l2 norm of the jumps faster in the beginning, and then for large time the
l2 norm will decrease very slowly again. In some sense, the total amount of numerical
diffusion is given in the decrease of the l2 norm. In the so-called second-order methods
(like θ = 1, 2), the amount of diffusion is much smaller than in first-order methods
represented here by the LxF scheme (θ = 0). We will address this issue in a different
paper and use it to improve the error estimate for θ = 1.

Example 2. Burgers’ equation (see Figure 5.2). We consider the same initial data,
numerical schemes, ∆x, λ, and T , as in the first example. Note again the oscillatory
behavior of the l∞ norm and the monotonicity of the l2 norm for θ = 1, 2. This is a
generic case of nondecreasing initial data which corresponds to a region of spreading
of the characteristics.

The nonlinearity of the flux in such regions helps to decrease overall any norm
of the jumps. In the case of a general initial condition, the l2 norm of the jumps
decreases in every region of rarefaction. That is, for convex flux numerical schemes
decrease the one-sided l2 norm of the jumps,∑

j

(vn+1
j − vn+1

j−1 )2+ ≤
∑
j

(vnj − vnj−1)
2
+.

It is important to note that in the case of convex/concave flux extreme values separate
the regions of rarefactions from the regions of shocks, and we observe numerically that
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the l2 norm of the jumps decreases in every interval where the numerical solution is
nondecreasing/nonincreasing.

In the nonconvex case (at least one inflection point), the situation is quite differ-
ent. In one interval of monotonicity we can have both shocks and rarefaction waves.
In that case, the NT scheme with θ = 2 converges to a wrong weak solution even for
the Buckley–Leverett problem; see Example 3 in [8]. Our numerical tests show that
the NT scheme gives a wrong solution to that problem for any value of θ ≥ 1.2 and
in general it looks like the biggest reliable value of θ for a nonconvex flux is θ = 1.
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